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Abstract
Stochastic-deterministic (SD) speech modelling exploits the
predictability of speech components that may be regarded deter-
ministic. This has recently been employed in speech enhance-
ment resulting in an improved recovery of deterministic speech
components, although the improvement achieved is largely de-
pendant on how these components are estimated. In this pa-
per we propose a joint SD Wiener filtering scheme that exploits
the predictability of sinusoidal components in speech. Estima-
tion of sinusoidal speech components is approached in the re-
cursive Bayesian context, where the linearity of the joint SD
Wiener filter and Gaussian assumptions suggest a Kalman fil-
tering scheme for the estimation of sinusoidal components. A
further refinement also imposes a restriction of a smooth spec-
tral envelope on sinusoidal magnitude estimates. The result-
ing joint SD Wiener filtering scheme improves speech quality
in terms of the perceptual evaluation of speech quality (PESQ)
metric when compared to both the traditional Wiener filter and
the proposed Wiener filter based on alternative estimates of de-
terministic speech components.
Index Terms: Speech enhancement, stochastic deterministic
model.

1. Introduction
Background acoustic noise is a commonly recurring problem in
mobile voice communication, where speech quality and intel-
ligibility may be significantly compromised in the presence of
low signal to noise ratios (SNRs). Accordingly, attempts to mit-
igate the negative effects of background acoustic noise (com-
monly referred to as speech enhancement) have been researched
for several decades now. Speech enhancement for mobile voice
communication is particularly difficult due to the necessity for
real-time processing of signals, limited computational resources
and often the constraint of a single microphone. This paper con-
siders speech enhancement within this context.

Many single-channel short-time Fourier transform (STFT)
speech enhancement methods are applicable for such purposes,
including spectral subtraction [1], Wiener filtering [2] and
short-time spectral amplitude estimators (STSA) [3]. Much of
the focus in improving these algorithms has made use of en-
tirely stochastic models for noise and speech. For example,
investigations have been made into alternate stochastic charac-
terisations of STFT coefficients, considering a range of purely
stochastic (zero-mean) a priori speech distribution shapes [4,5],
STFT coefficient correlations [6] and cost functions [7]. Al-
ternative approaches to speech enhancement have focussed in-
stead on deterministic models for speech. McAulay and Mal-
pass [8] considered speech signal STFT coefficients as deter-
ministic quantities corrupted by complex Gaussian noise, and
Jensen and Hansen [9] considered speech enhancement where
speech is modelled by a set of deterministic sinusoids.

Despite the success of attempts to characterise speech as ei-
ther stochastic or deterministic, it is known that speech is more
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accurately described to contain both stochastic and determinis-
tic components simultaneously. Explicitly considering speech
to have both stochastic and deterministic components generally
leads to an improved estimation and hence enhancement of each
component, as observed in [10, 11]. This earlier work con-
sidered estimates of stochastic and deterministic components
independently which are then combined based on additive or
soft-decision procedures. However, only recently has a joint
stochastic-deterministic (SD) model been considered [12], lead-
ing to further improvements in the enhancement of determin-
istic speech components. Whilst [12] works in the minimum
mean-square error (MMSE) STSA context, this paper endeav-
ours to apply such a joint SD approach to Wiener filtering, with
careful attention paid to the estimation of deterministic compo-
nents.

As in [12], here the harmonic plus noise or SD model com-
monly employed in the areas of speech coding and speech syn-
thesis [13, 14] is considered. That is, the signal under consider-
ation is assumed to be of the form,1

x[n] = v[n] + u[n], (1)

where the deterministic component v[n] is of the form,

v[n] =

L−1∑
l=0

rl[n]cos(φl[n]), . (2)

This component contains L harmonic sinusoids indexed by l,
where φl[n] represents a discrete instantaneous phase function,
φl[n] =

∑n
c=1 2πlf0[c] + φl[0] with f0[c] the instantaneous

fundamental frequency and φl[0] the phase offset at n = 0.
The stochastic component, u[n], may be considered the signal
residual, i.e., all signal components that can not be represented
by v[n], although more specific stochastic-deterministic mod-
els restrict u[n] to a quasi-stationary, zero-mean stochastic pro-
cess [13,15]. In the context of speech enhancement, the stochas-
tic signal component is necessary to allow for the possibility
of aperiodic sounds and unpredictable signal perturbations in
speech. The obvious advantage of considering the determin-
istic component explicitly (i.e., sinusoids in the model of (1)),
is that its properties (e.g. the periodicity of sinusoids) may be
exploited to allow improved estimation of these components.
However, the improvement observed is largely dependent on
the accuracy of the estimation of deterministic components. A
range of techniques for the estimation of sinusoidal amplitude
and phase exist both in a general sense [16, 17] and specific to
speech signals [18, 19]. The best method for use in the case of
SD speech enhancement is still unclear and largely uninvesti-
gated.

In this paper we derive the joint SD STFT Wiener filter with
recursive Bayesian estimation of deterministic speech compo-
nents. The highly non-stationary nature of speech signals sug-
gests a recursive Bayesian approach is appropriate. Due to the

1Note that boldface symbols denote random variables, whilst the
corresponding plain font symbols represent the values they take.
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Gaussian assumptions and linear processing in the Wiener filter-
ing framework, the estimation of deterministic speech compo-
nents reduces to the design of a complex Kalman filter. This
is further combined with exploitation of the smooth spectral
contour characteristic of speech [20]. Unlike many other ap-
proaches to the estimation of sinusoidal parameters in the STFT
framework, this approach exploits correlation in both time and
frequency of frequency modulated sinusoidal components.

2. The Joint SD Wiener filter
The common objective of STFT speech enhancement is to esti-
mate a clean speech signal x[n] from a signal mixture, y[n] =
x[n] + d[n]. This estimate is obtained via the STFT,

Y[k,m] =

N−1∑
n=0

y[n+mM ]w[n] exp

{
−2πikn

K

}
,

for 0 ≤ k < K, where k corresponds to the STFT frequency
bin number. The parameters M , K and w[n] refer to the shift
in samples between successive window frames, the DFT length
and the windowing function, respectively. Due to the linear-
ity of the STFT it is equivalent to estimate X[k,m] from the
mixture Y[k,m] = X[k,m] + D[k,m]. Perhaps the most
effective STFT speech enhancement methods have been de-
veloped in the Bayesian MMSE context [3, 5, 6]. The deriva-
tion of such estimators relies on the definition of the statisti-
cal properties of both noise and speech. Here we focus on
the statistical characterisation of speech and so the noise pro-
cess, d[n], is generically assumed to be white Gaussian. Under
this assumption it is adequate for the purposes of speech en-
hancement to assume that D[k,m] is independently zero-mean
complex Gaussian distributed for each k, with scale parame-
ter λd,k = E

{
|D[k,m]|2

}
, where E {·} denotes the expecta-

tion operator [3]. Applying similar assumptions to u[n] of (1),
X[k,m] may be assumed to be independently complex Gaus-
sian distributed for each k with complex mean [12],2

V [k,m] =

L−1∑
l=0

rl[mM ]

2

(
eiφl[mM ]Wfl [k] + e−iφl[mM ]W1−fl [k]

)
,

(3)
and scale parameter λd,k = E

{
|X[k,m]− V [k,m]|2

}
. Here

Wfl [k] =
∑N−1
n=0 w[n] exp {2πin (fl − k/K)} is the DFT of

the windowing function w[n], modulated by a complex expo-
nential. fl may be considered the average of ωl[n]/2π for
mM ≤ n < N .3 With these statistical preliminaries, the clean
speech is estimated within the Bayesian MMSE context as,

X̂[k,m] = E {X[k,m]|Y[k,m] = Y [k,m]} . (4)

This problem is simplified by considering the posterior pdf,
pX|Y (X[k,m]|Y [k,m]), which is known to be [12],

pX|Y (X[k,m]|Y [k,m]) =
1

πλk
exp

{
− |X[k,m]− ζk|2

λk

}
,

where,

ζk = Y [k,m]
λx,k

λx,k + λd,k
+ V [k,m]

(
1− λx,k

λx,k + λd,k

)
,

and λk = λx,kλd,k/ (λx,k + λd,k). The resulting expecta-
tion of (4) is simply the mean of this posterior distribution,
ζk. Hence the SD STFT Wiener estimate, X̂[k,m] = ζk, is

2This model relies upon the assumption that both rl[n] and ωl[n]
are changing slowly enough to be considered constant for N samples.

3Whilst fl is dependent on window indexm, for notational simplic-
ity, this will not be stated explicitly (e.g. fl[m]) unless necessary.

seen to be a weighted combination of the observed speech sig-
nal Y [k,m] and the a priori information contained within the
speech mean V [k,m], dependent on the distribution scales λx,k
and λd,k. The potential improvement in performance of the SD
STFT Wiener filter over purely stochastic Wiener filters is heav-
ily dependent on the estimation of the speech mean V [k,m].
As will be shown in Section 4, given a very accurate estimate
is possible, the SD STFT Wiener filter offers a significant im-
provement in performance.

3. Estimation of deterministic speech
parameters

In this paper V [k,m] is entirely specified by the magnitude and
phase of each sinusoid in v[n] (or equivalently their complex
amplitude for frame m, νl[m]), and the fundamental frequency
f0. The value, f0, may be accurately estimated using a range
of techniques [21,22]. Here the estimation of νl[m] is focussed
on, assuming prior knowledge of the fundamental frequency.

The values νl[m] may be considered to be correlated in
time and frequency, rendering them predictable. First, in a
STFT analysis/synthesis system, the slowly varying nature of
the frequency and amplitude of voiced speech (relative to M )
mean that sinusoid amplitude and phase in the current frame is
predictable from the previous frame. Secondly, it is well known
that the spectral envelope of speech is smooth, hence the ampli-
tude of a sinusoid may be predicted from other sinusoids in the
same frame. Here a recursive Bayesian estimation approach is
used to exploit correlation in time, and a parametric autoregres-
sive (AR) model is used to exploit correlation in frequency.

3.1. Recursive Bayesian estimation of amplitude and phase

Given the STFT observation of the clean signal [X[m]]K−1
k=0 =

[X[0,m], X[1,m], . . . , X[K − 1,m]]T ,4 a measurement of
the complex amplitude of a sinusoid with known frequency may
be obtained via the maximum likelihood method [23],

ν̂l[m] = s[fl]
TFH [X[m]]K−1

k=0 , (5)

where s[fl] =
[
e0, e−2πilf0 , e−2πi2lf0 , . . . , e2πi(N−1)lf0

]T
is a vector of length N containing complex exponential
samples at known frequency fl[m] and F ∈ CK×K is
the DFT matrix. A series of measurements, ν̃l[m] =
exp

{
−2πiM

∑q
τ=m fl[τ ]

}
ν̂l[m],5 for a sample of voiced

speech are plotted in Figure 1. It may be noted here that these
measurements are highly correlated. That is, given p measure-
ments of ν̃l[m] for q − p ≤ m < q, it is clear that the mea-
surement ν̃l[q] may be estimated with some accuracy based on
this history of data and no information from the current frame.
Specifically, if this a priori estimate, ν̃l,prior[q], is assumed to
be linear, then it may be obtained from a history of a posteri-
ori estimates [ν̃l,post]

q−1
m=q−p via linear prediction with an ap-

propriate modification allowing for the shift in phase between
successive STFT windows,

[ν̃l,prior]
q
m=q−p+1 = e−2πif [q]MA [ν̃l,post]

q−1
m=q−p , (6)

where,

A =

[
αp−1 ap
Ip−1 Θp−1

]
.

4In this paper (·)T represents the vector transpose operation, and
(·)H the Hermitian transpose. Throughout the paper vectors are con-
structed in the way shown here, i.e., a column vector of a signal z[n]
containing elements 0 ≤ n ≤ N − 1 will be denoted [z]N−1

n=0 .
5The exponential term is included here to account for the expected

phase shift between samples of ν̂l[m] in successive frames [12].
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Figure 1: Observations of νl[m] plotted on the complex plane
for an utterance of the vowel /æ/. Observations are indicated
with dots, and lines are drawn between consecutive observa-
tions. The dotted line, dashed line and solid line, correspond
to the second, fourth and fifth harmonics respectively. A sam-
pling rate of 8kHz was used and STFT parameters N = 240,
M = 120. w[n] was a Hamming window.

Here Ip ∈ Rp×p denotes the identity matrix and Θp ∈ Rp×1

is the zero vector. The linear prediction coefficients αp =
[a1, a2, . . . , ap] may be estimated from a history of previous
estimates (e.g. from [ν̃l,post]

q−1
m=q−p) via the Yule-Walker equa-

tions [20]. The linear restriction here simplifies the Bayesian
estimation to be applied in this section by preserving the Gaus-
sian assumptions of D[k,m] and X[k,m].

To demonstrate the preservation of Gaussian assumptions,
the Gaussian assumption of the variables X[k,m] combined
with the linear processing of (5), mean that the measure-
ments ν̃l[m] are also Gaussian distributed with mean µν [m] =

s[f ]TFH [V [m]]K−1
k=0 , and covariance,

λν̃,l[m] = s[f ]TFHCXX[m]F
(
s[f ]T

)H
, (7)

where CXX[m] ∈ CK×K is the covariance matrix character-
ising [X[m]]K−1

k=0 . A similar argument applies to both observa-
tions made from the noisy STFT Y[k,m], and the prediction
of (6) which is a recursive linear combination of Gaussian dis-
tributed variables. Hence applying recursive Bayesian estima-
tion here reduces to the design of a Kalman filter.

3.2. Kalman filter prediction
For each m and l, a prediction of a complex sinusoid amplitude
may be obtained via (6). The covariance matrix of this a priori
estimate is given by,

Pprior[q] = APpost[q − 1]AH + Ψ, (8)

where Ψ = diag {λν̃,l[q], 0, . . . , 0}, and λν̃,l[q] is the covari-
ance of the complex amplitude of sinusoidal component l in
frame q. Ppost[q − 1] is the covariance of the a posteriori es-
timate [ν̃l,post]

q−1
m=q−p at frame q − 1, as will be described in

Section 3.3. Under the Gaussian and independence assump-
tions of X[k,m] for all k, the covariance matrix CXX[m] is
diagonal and is often estimated in STFT speech enhancement
via the decision-directed method [3] or in the case of SD STFT
speech enhancement, via the modified decision-directed method
of [12].

3.3. Kalman filter correction
Observations, γ̃l[m], of νl[m] may be made from the noisy
STFT signal via,

γ̃l[m] = s[fl]
TFH [Y [m]]K−1

k=0 . (9)

Under the independence and Gaussian assumptions of Y[k,m]
made in Section 2, observations γ̃l[m] have covariance,

λγ,l[m] = s[f ]TFHCYY[m]F
(
s[f ]T

)H
,

where CYY[m] = CDD[m] +CXX[m]. For a variety of noise
types in speech enhancement CDD[m] is also often assumed
diagonal and may be estimated with a range of techniques, such
as that of [24]. Considering the prediction of (6) and the obser-
vation made via (9), an a posteriori estimate may be obtained,

[ν̃l,post]
q
m=p−q+1 = K[q]γ̃l[q]+(Ip −K[q]) [ν̃l,prior]

q
m=q−p+1 .

(10)
The Kalman gain K[q] = diag {k[q], 0, . . . , 0} is specified by,

k[q] =
λν̃,l[q]

λν̃,l[q] + λγ̂,l[q]
.

Finally the a posteriori estimate covariance is calculated as,

Ppost[q] = (I −Km)Pprior[q]. (11)

Equations (6), (8), (10) and (11) define the Kalman filter pre-
diction, a priori covariance, correction and a posteriori covari-
ance, respectively, for the estimation of deterministic compo-
nents of the type (2) in noisy speech. Unlike previous applica-
tions of Kalman filtering in speech enhancement [25, 26], the
approach here focuses on the estimation of deterministic com-
ponents (i.e., sinusoids) that exist across several STFT frames.
Furthermore, it incorporates explicit consideration of frequency
modulation and phase shift between successive frames.

3.4. Calculation of deterministic spectra
The Kalman filtering scheme described in Sections 3.2 and 3.3
yields an estimate of the complex amplitude νl[m] of sinu-
soidal component l, independently for 0 < l < L. These es-
timates, combined with knowledge of f0, completely describe
the mean spectrum of (3). That is, rl[mM ] = |ν̃l,post[m]| ,
φl[mM ] = ∠ (ν̃l,post[m]) and fl = lf0. Hence, V [k,m] may
be synthesised according to (3).

Whilst the estimates ν̃l,post[m] exploit the correlation in
time of deterministic speech components well, because they
are estimated independently, the correlation in frequency, i.e.,
between ν̃l,post[m] for various l, remains unexploited. AR
models are widely employed in speech signal processing and
enhancement to exploit the smooth spectral envelope seen in
speech [20]. For the deterministic speech component estimates
here, an estimate of AR model parameters, bc for 0 < c ≤ ρ,
may be obtained from the inverse DFT of V [k,m] via the Yule-
Walker equations. The AR spectrum,

B[f,m] =
σy

1 +
∑ρ
c=1 bce

−2πifc

where σ2
y = 1/K

∑K−1
k=0

∣∣∣V [k,m]
(

1 +
∑ρ
c=1 bce

−2πick/K
)∣∣∣2,

may then be sampled at f = fl, to obtain a refined estimate
of the magnitudes, |ν̃l,post[m]|, which is smoothly evolving in
frequency. In the experiments in this paper this refinement was
found to further improve both the accuracy of deterministic
speech component estimation, and the PESQ measure at the
output of the proposed SD Wiener filter.

4. Experimental Evaluation
In informal experimental observations over a range of male and
female speakers from the TIMIT database, it was commonly
observed that the deterministic speech component estimation
method of Section 3 was notably more accurate than the meth-
ods used recently in SD-based speech enhancement [11, 12].
A typical comparison of the magnitude of deterministic speech
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Figure 2: A log-magnitude spectrogram demonstration of the
recovery of deterministic speech components using the utter-
ance “Few rural areas are protected by zoning”. (a) The deter-
ministic speech component obtained from the clean speech sig-
nal (i.e., via (5)). (b) The speech signal corrupted by WGN at
an SNR of 5dB. (c) An estimate of the deterministic speech com-
ponent using the proposed method of Section 3. (d) An estimate
of the deterministic speech component via the method of [12].
The STFT parameters N = 240, M = 60 and K = 480 were
used. w[n] was a Hamming window.

component estimation is shown in Figure 2. Here it can be seen
that the proposed estimation method in Figure 2(c) more accu-
rately recovers the true formant structure seen in Figure 2(b),
when compared to the reference method of Figure 2(d). It can
be seen that the latter method has a tendency to overestimate
the magnitude of deterministic speech components (for exam-
ple, in the region of 0.6s to 1s). It was noticed in these regions
of notable magnitude overestimation, that the output contains
significant unnatural and harsh sounding artefacts.

The evaluation of the proposed joint SD Wiener filter was
conducted in a range of configurations to demonstrate the rela-
tionship between performance and the method of deterministic
speech component estimation used. The evaluation considers
the proposed method of Section 3 (named KAL), the window
averaging method of [11] (named AV), the recursive averag-
ing method of [12] (named REC), and the maximum likelihood
method [23] taken from the current frame of clean speech data
(named CLEAN). Also included for reference are the results
from the unmodified Wiener filter [2] (named WIEN), and the
noisy speech signal itself (named NOISY). All configurations
were tested over 30 “phonetically diverse” utterances from 10
speakers of the TIMIT database, equal parts male and female.
Each utterance was combined with white noise at SNRs from
-5dB (typically unintelligible) to 15dB (typically entirely in-
telligible) according to the methods of [27]. All resulting in-
put data was sampled at 8kHz and filtered according to [28]
to better simulate mobile speech communication. For all al-
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Figure 3: PESQ measures obtained with the proposed and ref-
erence algorithms. From top to bottom, (©) CLEAN, (+) KAL,
(�) REC, (∗) WIEN, (♦) AV, (4) NOISY.

gorithm configurations, N = 240, K = 480, M = 60 and
the modified decision-directed method of [12] was used to es-
timate λx,k with a smoothing parameter of 0.98. For the pro-
posed algorithm p = 3 and ρ = 10. Noise estimates (i.e.,
estimates of λd,k) were obtained from a 0.48s noise-only seg-
ment at the start of each utterance (removed prior to objective
evaluation). Estimates of f0 were obtained via the maximum
likelihood method [16] from the noise corrupted data.

The results of the aforementioned evaluation are shown in
Figure 3 as measured via the PESQ metric [29] averaged over
all utterances. The PESQ metric is a common tool for the eval-
uation of speech enhancement algorithms [5, 7, 11, 12, 25, 30]
and is in the range of 1-4.5, where a higher score indicates an
increase in perceptual speech quality. When compared to un-
modified Wiener filtering, it can be seen that the proposed KAL
algorithm increases the average PESQ score by approximately
0.1-0.16, where the best performance is seen at an SNR of 5dB
(an increase of 0.16 in PESQ score). On individual utterances
increases of up to 0.3 were observed. The results for the AV
and the CLEAN algorithms demonstrate how heavily the out-
put of the joint SD Wiener algorithm depends on the method of
deterministic component estimation. The excellent results for
the CLEAN algorithm are promising in that they indicate even
more significant improvements may be possible given further
research into deterministic component estimation is successful.

The proposed KAL algorithm also outperforms the REC
algorithm with regards to the PESQ measure, particularly at
higher SNRs. It is interesting to note that whilst this improve-
ment is minimal at lower SNRs, the most audible differences
between the output of KAL and REC were observed under
these conditions. That is, the REC algorithm consistently had
quite audible artefacts (mentioned earlier in this section) dur-
ing voiced speech segments, these being more prominent at low
SNRs. In the case of the KAL algorithm these artefacts were
non-existent.

5. Conclusion
In this paper the joint SD Wiener filter was introduced with spe-
cific attention to the estimation of deterministic speech compo-
nents. A recursive Bayesian approach was used for the esti-
mation of these components which reduced to the design of a
Kalman filter. In addition, it was found advantageous to limit
the spectral envelope of deterministic components to an AR
spectrum, imposing smoothness of the envelope. The result-
ing algorithm was found to better estimate deterministic speech
components than other recent methods employed, resulting in
an improved PESQ score, and a mitigation of unnatural sound-
ing artefacts at the algorithm output.
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