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Abstract
Obtaining estimates of the fundamental frequencies associated
with either noise or speech in noise/speech mixtures can be im-
portant in speech enhancement. Accurate simultaneous estima-
tion of these can result in both an improved subjective quality
as well as a higher signal to noise ratio (SNR) of the resulting
speech. It is crucial with such an algorithm that each periodic
component be reliably identified as either noise or speech. Fur-
ther, the algorithm needs to be robust to changing SNR of the
noisy speech arising from a range of environmental conditions.
In this paper a multipitch tracking algorithm is proposed based
on a stochastic-deterministic (SD) signal model in the complex
short-time Fourier transform (STFT) framework, using a facto-
rial hidden Markov model (FHMM). Unlike previous multipitch
tracking algorithms based on FHMMs, the proposed algorithm
performs well even when the levels of noise and speech differ
significantly from those of the training data. This robustness is
attributed in part to the flexible SD model employed. With this
model, a priori information of noise and speech used to identify
and track non-stationary periodic components is based primar-
ily on their spectral envelope, not their absolute amplitude.
Index Terms: Multipitch tracking, hidden Markov model,
Gaussian mixture model, speech enhancement.

1. Introduction
Estimating the fundamental frequency of audio signals is a well
known problem in the research of speech signal processing.
Solving this estimation problem well has a broad range of appli-
cations including speech coding [1], speaker identification [2],
single channel source separation [3, 4] and speech enhance-
ment [5]. For the case where the analysed signal contains a
mixture of fundamental frequencies (potentially corrupted by
broadband noise), the problem, known as multipitch tracking,
is challenging and has attracted much attention over the last
decade [6, 7, 8, 9]. Relatively little research has focussed on
the design of multipitch tracking algorithms specifically for the
application of speech enhancement. In this paper, it is discussed
how many recently developed algorithms fail to meet the re-
quirements of such an application, and a new algorithm is de-
rived that better meets these requirements when compared to a
recently developed and closely related algorithm.

A range of speech enhancement algorithms have been de-
veloped that assume knowledge of the fundamental frequency,
f0, of speech [10, 11, 4, 12] , and of noise [5]. Clearly there
is potential for periodic components of both speech and noise
to simultaneously exist, in which case the correct f0 (related to
noise, speech or both acoustic sources, depending on the algo-
rithm) must be labelled reliably. In the case that this labelling
fails (i.e., the f0 of speech is labelled to be that of noise, or vice
versa), the consequences can be significant. For example, this
misidentification in the case of [5], will result in the removal of
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speech from the noisy speech signal, which is highly undesir-
able.

Considering the range of environmental conditions under
which the aforementioned speech enhancement algorithms may
need to operate (if applied in a mobile communication device
for example), then the multipitch tracking algorithm used to
track and label f0 must also be capable of performing irrespec-
tive of any environmental variation. Perhaps the most common
and expected of these variations is that of SNR. If the multip-
itch tracking algorithm’s performance is notably compromised
by such a variation, then the range of applications where this
algorithm is useful is severely limited.

With the necessary features of noise/speech source labelling
and robustness to varying SNR, the design of a multipitch track-
ing algorithm is somewhat challenging. Algorithms have been
proposed that are robust to varying SNR [6], and able to label
sources [8]. However, both of these features rarely exist in any
single algorithm. The specificity of [8] to the data on which the
algorithm is trained provides an excellent source discrimination
capability, but results in a heavy dependence on the environ-
mental conditions under which the algorithm is trained (includ-
ing the amplitude/power of training data). In contrast the de-
sign of [6] is based on some fundamental auditory properties of
periodic signals which makes it reliable under a range of envi-
ronmental conditions, but a lack of ability to incorporate source
specific data into the algorithm means it is unable to inherently
discriminate between noise and speech f0.

In this paper an algorithm is derived that makes use of an
FHMM, which has recently been identified as a natural frame-
work for the statistical analysis involved in multipitch track-
ing [13, 8]. Unlike these earlier works which model the log-
magnitude spectrum directly, and hence are heavily dependent
on the magnitude of noise/speech, here a STFT SD speech
model is employed [14, 15, 12]. This allows a direct mod-
elling of the deterministic components that are responsible for
periodicity in speech (impartial to noise/speech magnitude or
equivalently SNR). Furthermore, this decomposition results in
the use of an exact signal interaction model under the assump-
tions made, unlike other approximations used to date [13, 8].

2. SD signal modelling

Both Wohlmayr et al. [8] and Bach and Jordan [13] apply Gaus-
sian models to magnitudes and/or log-magnitudes of the STFT.
While this highlights the mean value of such features well, it is
known that these variables are not in fact Gaussian distributed
[16, 17]. In this paper the complex valued STFT is considered.
When the signal contains a set of harmonically related deter-
ministic components, each of the variables at the output of the
STFT is modelled well by a non-zero-mean complex Gaussian
distribution [18, 5, 12].

Specifically, in this paper mixtures of signals of the follow-
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ing form are considered,

xs[n] =

Ls∑
l=1

rl,s[n] cos(2πlf0,s[n]n+ φl,s[n]) + us[n]

= bs[n] + us[n]. (1)

Here subscript s indexes each source in a signal mixture. The
signal bs[n] represents a deterministic component of xs[n],
us[n] represents a zero-mean stochastic process and Ls repre-
sents the number of harmonics in source s, indexed by l. This
signal model covers many typical models for speech signals
such as [19, 20, 21, 11], and a wide range of noise sources [5].

The problem this paper endeavours to solve is, given the
signal mixture, y[n] =

∑S
s=1 xs[n], estimate f0,s[n]. This pa-

per considers the case S = 2 only which is very common in
recent multipitch tracking literature [6, 13, 22, 8]. In terms of
the STFT framework, the following signal is considered,1

Y [k,m] =

N−1∑
n=0

y[n+mτ ]w[n] exp

{
−2πikn

K

}
at each frequency domain index 0 ≤ k < K, and each window
frame indexm. Here,w[n] represents the time domain window-
ing function, N is the windowing length, K is the DFT length,
and τ represents the increment in time index between each suc-
cessive frame. It is practical to estimate f0,s[mτ ] for only in-
teger values of m, provided that they change slowly enough to
be considered constant for windowing length N . Likewise, a
similar restriction applies to the variables rl,s and φl,s.2

The statistical characterisation of signals of the form in (1)
is well known in the frequency domain [18], and is reflected
within their STFT representation. That is, for a given STFT
frame, Xs[k] is described by Xs[k] = Bs[k] + Us[k], where,

Bs[k] =

 Ls∑
l=1

r2l,s

 1
2

·

Ls∑
l=1

e
al,s
2

2

{
eiφl,sWf0,s [k] + e−iφl,sW1−f0,s [k]

}
(2)

and Wf0,s [k] =
∑N−1
n=0 w[n] exp {2πin(f0,s − k/K)} is the

discrete Fourier transform (DFT) of w[n] modulated by a com-
plex exponential. The normalised log magnitude variables,
al,s = log

{
r2l,s
/∑Ls

l=1 r
2
l,s

}
will be considered for the pur-

poses of noise/speech labelling in this paper because they are
independent from the total energy of the deterministic signal
components for a given source.

Based on the discussion in [18, 19], Us[k] may be consid-
ered independent for all k, and for each k this signal may be
characterised by a zero-mean complex Gaussian distribution. If
Bs[k] is considered a deterministic quantity as in [18, 5], then
here Xs[k] is distributed according to,

p(X[k]|Bs[k]) =
1

πλs[k]
exp

{
− |Xs[k]−Bs[k]|2

λs[k]

}
where p(·) denotes a probability density function (pdf) and
λs[k] is defined as E

{
|Xs[k]−Bs[k]|2

}
. It is then trivial to

derive the pdf of the signal mixture for each k, given harmonic

1In this paper an upper case letter represents the STFT of the corre-
sponding time-domain signal denoted in lower-case.

2For notational simplicity, the explicit dependency of these variables
on frame number m will be indicated in superscript. Futhermore, the
dependence onm will be dropped from the notation altogether where it
is unnecessary. For example, f0,s[mτ ] = fm0,s = f0,s.

amplitudes and phases (rl,s and φl,s) and frequency f0,s. In
this paper the notation [zs]

d
s=c will be used to represent a vec-

tor [zc, zc+1, . . . , zd]
T . Hence, we define the vectors as =

[al,s]
Ls
l=1 and φs = [φl,s]

Ls
l=1.3 For the purposes of notational

brevity, the harmonic structure variable set (a1,a2,φ1,φ2)
will be henceforth denoted H where appropriate, and the fre-
quency pair f0,1, f0,2 will be denoted as f0. With this notation,
the aforementioned pdf is given by,

p(Y [k]|H, f0) =
1

πλ[k]
exp

{
− |Y [k]−B[k]|2

λ[k]

}
,

where B[k] = B1[k] +B2[k] and λ[k] = λ1[k] + λ2[k]. Note
that for a given STFT framework (i.e. given w[n], τ , N and
K), the parameter Bs[k] is entirely specified by f0,s, as and
φs. Due to the independence of the variables Y [k] for all k,
under the assumed model, then the joint pdf of all observations
for a given STFT frame is,

p(Y|H, f0) =
1

πK/2 det (λ)1/2
exp

{
|Y −B|T λ−1 |Y −B|

}
(3)

where Y = [Y [k]]Kk=1, B = [B[k]]Kk=1 and λ =

diag
(

[λ[k]]Kk=1

)
.

In a typical FHMM pitch tracking framework, (3) may
be considered the observation model (i.e., given H). It may
be noted here that this observation model was derived based
upon the exact additive interaction of the complex STFT of two
sources. This is unlike previous FHMM based multipitch track-
ing methods that rely upon source interaction approximations
such as additive STFT magnitude models [13, 8], or the mix-
ture maximisation model [23, 8]. In addition, any signal noise
is explicitly characterised by λ. Explicit noise consideration is
important for multipitch tracking algorithms to remain robust to
different environmental noise conditions.

In the following section it will be seen that the observa-
tions as combined with the transitional probability mass func-
tion (pmf) P (fm0,s|fm−1

0,s ), described in the following section,
allow the algorithm to differentiate between different sources
based on both the spectral envelope (due to as) and the time
varying behaviour (due to P (fm0,s|fm−1

0,s )) of a particular source
for which it is trained. The definition of the deterministic com-
ponent (i.e., in (2)), is somewhat arbitrary in that it may be de-
fined to be any feature of the complex STFT that is predictable
from measurements over any time interval. as is sufficient for
the purposes of this paper, although further research into the use
of the SD model for multipitch tracking may consider a range of
features. Hence the implementation of the SD model is rather
flexible, yet, regardless of the features used the fundamental al-
gorithm and approach described in this paper remains the same.

3. Pitch tracking in the FHMM framework
with the SD signal model

FHMMs consider the tracking of multiple independent Markov
processes that each evolve independently, when the available in-
formation to do so may be considered a joint result of the com-
bined states of all Markov processes. In the multipitch tracking
problem fm0,s takes on a set of discrete frequency values. These
variables may be considered the hidden variables in the FHMM
with the independent prior probability mass function (pmf)
P (f0

0,s), and independent transitional pmf P (fm0,s|fm−1
0,s ). The

observation pdf, p(Y,H|f0) = p (Y |H, f0 ) p (H|f0), that
completes the description of the FHMM is described later in
this section.

3Here, bold symbols represent vectors and [·]T denotes the vector
transpose.
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It is proposed here to augment the direct complex
STFT observations Ym, with the harmonic structure observa-
tions âms , φ̂

m

s which may be considered online estimates of
ams ,φ

m
s .This is necessary not only to evaluate (3), but these

estimates are also useful features in assigning pitch tracks to
their respective sources as will be described later in this sec-
tion. Given the set of observations Ym, âms , φ̂

m

s , the com-
plete FHMM may be described as follows. If it is denoted
{ς} =

⋃M
m=1 ς

m, for an arbitrary sequence ςm. Then the joint
pdf of all observations and frequency states is, 4

p
(
{Y} ,

{
Ĥ
}
, {f0}

)
= p

(
{Y} ,

{
Ĥ
}
|{f0}

)
p ({f0})

= P
(
f0
0,1

)
P
(
f0
0,2

) M∏
m=2

p
(
Ym

∣∣∣Ĥm, fm0

)
·

p
(
Ĥm|fm0

)
P
(
fm0,1|fm−1

0,1

)
P
(
fm0,2|fm−1

0,2

)
. (4)

Assuming that the harmonic structure variables composing Ĥm

are independent of each other, then p
(
Ĥm|fm0

)
is the product

p
(
âm1 |fm0,1

)
p
(
âm2 |fm0,2

)
p
(
φ̂
m

1 |fm0,1
)
p
(
φ̂
m

2 |fm0,2
)
. The mul-

tipitch tracking problem may then be solved by finding,

{fest,1, fest,2} = arg max
{f0}

p
(
{Y} ,

{
Ĥ
}
, {f0}

)
. (5)

For an equivalent HMM the exact solution may be com-
puted using the Viterbi algorithm, or alternatively using the
junction tree algorithm [24]. To allow operation in real-time, the
proposed algorithm considers the solution at each STFT frame
over current and past data only, i.e., the solution to (5) over the
sequence 0 ≤ m ≤ µ, where µ is the current frame.

For the observation model in (3) to be useful within an
FHMM framework, the statistical properties characterising the
variables as,φs upon which the observation model is depen-
dent, must be specified. Previously, Wohlmayr overcame this
requirement by modelling the magnitude and log-magnitude of
Y [k] directly and independently for each frequency state f0,s,
with the use of GMMs [8]. These magnitude or log-magnitude
GMMs inherit the environmental characteristics of the training
data (acoustic environment, equalisation, source levels etc.) and
are not robust to changes in these.

Bach and Jordan [13] modelled the harmonic amplitudes
rs = [rs]

Ls
s=1 as a smooth Gaussian process on the line [0,K/2].

However in the application of speech enhancement, the as-
sumed smooth set of harmonic amplitudes that is characteristic
of speech may not accurately represent acoustic noise sources
such as chainsaws or outboard boat engines [5].

To avoid these restrictions on source type and environment.
The distribution of as is modelled (as opposed to rs) with the
use of a set of GMMs and no smooth restriction, i.e.,

p(ams |fm0,s) =

Q∑
q=1

αq,sN (πq,s,Σq,s) (6)

here, N (πq,s,Σq,s) represents an Ls dimensional Gaussian
distribution function with mean πq,s and covariance Σq,s. Here
Σq,s is restricted to be diagonal for all q. The GMM parame-
ters of (6) may be trained using the expectation maximisation

4When estimates are used as arguments of pdfs, this refers to the pdf
of the corresponding random variable. For example, p(ẑ) denotes the
pdf of the random variable z, evaluated at the estimate ẑ.

method [25]. The maximum description length (MDL) criteria
is used to find an optimal Q as specified in [8].

The importance of signal phase (i.e., that of φs), is much
debated in STFT audio processing literature [26]. Whilst the
explicit characterisation of signal phase may still yield an im-
provement in performance for multipitch tracking algorithms,
here the phase is considered to have an uninformative prior, i.e.,
it is assumed φms ∼ U(0, 2π) independent of ams and fm0,s.
Hence, here it does not contribute to the solution of (5), al-
though further research may find use for a more informative
characterisation of φs.

Given a mixed signal of the form in (1), there are a wide
range of methods of estimating the values as [27]. In this paper
estimates of these values both for training and tracking purposes
are obtained with the use of the methods described in Chapter
13 of [18]. Specifically, for a given value of fm0,s, a harmonic
set of amplitude estimates obtained by (13.6) of [18] for frame
m will be denoted ρ̂

(
fm0,s
)
. The final amplitude and phase es-

timates at fm0,s are,

r̂ms =
∣∣(1− β)ρ̂

(
fm0,s
)

+ βνm−1
s · ρ̂

(
fm−1
back,s

)∣∣ ,
φ̂
m

s = angle
(
(1− β)ρ̂

(
fm0,s
)

+ βνm−1
s · ρ̂

(
fm−1
back,s

))
Here the term νm−1

s = diag

([
e
l2πifm−1

back,s
M
]Ls

l=1

)
is in-

cluded to allow for the expected phase shift between signal
frames. fm−1

back,s represents the most likely previous frequency
given the current frequency fm0,s, i.e., that which the back-
pointer points to in the standard Viterbi algorithm. The aver-
aging term is set to β = 0.5 in this paper. From r̂ms , φ̂

m

s , both
log-magnitude estimates âms and the deterministic spectrum in
(2) may be obtained.

4. Experimental evaluation
4.1. Implementation
The hidden variables of the FHMM described in Section 3, i.e.,
f0,1, f0,2, were discretised into 251 states linearly spaced be-
tween fmin = 50Hz and fmax = 300Hz, i.e., at intervals of
1Hz. P (f0

0,s) was trained via the ground truth data of the train-
ing utterances by calculating the fraction of observations made
in the data at each discrete pmf value. Similarly, P (fm0,s|fm−1

0,s )
was trained by calculating the fraction of observations of fm0,s
out of all observations of fm−1

0,s .
In order to solve (3) and hence (5), λm must be estimated.

A simple constant, λm[k] = 1, ∀k,m was found empirically
to provide good results. This value is also approximately equal
to the average spectral magnitude across all k in voiced signal
segments. Note that in the application of speech enhancement
λs[k] may also be continuously estimated for each source, via
the methods of [28, 12] for example.

The multipitch tracking algorithm described in Sections 2
and 3 makes no allowance for voicing decisions, i.e., it assumes
deterministic components are always present. For the experi-
ments here, a voicing decision was made via thresholding of:

νc =
p
(
Ym

∣∣∣Ĥm, fmest,c, f
m
est,d

)
∑fmax
fm
0,d

=fmin
p
(
Ym

∣∣∣Ĥm, fmest,c, f
m
0,d

) , (7)

where c 6= d. This voicing metric is specific to the case S = 2.

4.2. Experimental results
The proposed algorithm’s performance is compared here to the
algorithm in [8]. These algorithms will be referred to as SD-
FHMM (proposed), and GMM-FHMM (reference). Perfor-
mance is measured in the case of speech/noise mixtures where
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Table 1: Results for the proposed and reference [8] algorithms for speech/noise mixtures at a range of SNRs
E01 E10 E02 E20 E12 E21 Efine Eperm Egross ETot

-5dB
SD-FHMM 0.00 0.28 0.00 0.05 5.85 25.77 2.22 0.65 1.33 36.15

GMM-FHMM 0.00 0.72 0.00 1.18 0.51 22.52 2.29 0.24 0.14 27.62

0dB
SD-FHMM 0.00 1.04 0.00 0.24 4.30 17.29 2.53 0.65 2.42 28.47

GMM-FHMM 0.00 15.94 0.00 11.00 0.41 39.56 2.89 0.81 0.14 70.74

5dB
SD-FHMM 0.00 2.98 0.00 0.34 3.68 16.06 3.39 0.78 2.47 29.89

GMM-FHMM 0.00 30.32 0.00 16.19 0.06 41.18 3.98 0.30 0.17 92.18

both speech and noise have deterministic components. Here
noise is mixed with speech at SNRs of -5dB, 0dB and 5dB (mea-
sured via [29]), of which -5dB is most representative of the sig-
nal levels in the training data. The noise used in the experiments
here was chainsaw noise recorded from outdoor use of a single
chainsaw. Chainsaw noise is known to be composed of both
broadband and deterministic components [5] which is some-
what challenging for multipitch tracking algorithms and may be
considered explicitly by the SD signal model. The fundamental
frequency of a chainsaw covers much of the same range as that
of speech. However, its spectral envelope as and the movement
of f0 in time is distinct from speech, and so it provides a good
demonstration of how the features in this paper and those in [8]
may be used to label a speech or noise source.

So that the results presented are consistent with recent lit-
erature in FHMM based speech enhancement, the training data,
test data and ground truth pitch data were chosen as close as
possible to that in [8]. That is, the speech data consists of the
same four speakers from the GRID database [30], using 497
training utterances for each speaker, and the same 3 test utter-
ances for each speaker. All GMMs trained for either algorithm
were speaker dependent, i.e., sentences specific to the speakers
in each test utterance were used to train each GMM. Ground
truth pitch tracks were obtained using the RAPT algorithm [31]
for speech data. For noise data an automated pitch tracking al-
gorithm with manual correction was used as suggested in [6].
This was necessary due to the poor performance of the RAPT
algorithm on chainsaw noise data.

To measure the performance of each of the algorithms con-
sidered, the error metric described in [8] is used. Similar metrics
have been used throughout much multipitch tracking literature
[6, 22, 8, 32], and so it allows cross-comparison between pa-
pers. Specifically, each pitch track obtained is assigned to the
source which was used to train the tracking GMMs and pmfs.
Eij is the percentage of time frames where i pitch points were
misclassified as j pitch points. Efine is the average frequency
deviation (∆fm0,s) of estimates from reference pitch tracks as a
percentage, in frames where ∆fm0,s < 20%. Eperm is the per-
centage of time frames where ∆fm0,s > 20% for the assigned
pitch track but the estimate was within 20% of the unassigned
pitch track. Egross is the percentage of time frames that did not
contribute to Eperm but for which ∆fm0,s > 20%. Finally, Etot
is the summation of all other error terms.

The results from the tests conducted are shown in Table 1.
It should be noted that in these experiments a gain is applied to
the noise signal prior to mixing in order to achieve the desired
SNRs. This creates a difference in source levels between the
training and test noise data. Whilst both algorithms tested per-
form well under the -5dB condition, it can be seen that the per-
formance of GMM-FHMM deteriorates completely with more
significant changes in the noise source level. Specifically, a
significant amount of the noise pitch track is unidentified at
these higher SNRs resulting in high rates of E10, E20 and E21,
whilst the SD-FHMM algorithm shows consistent good per-
formance across all SNRs. The most significant errors of the
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Figure 1: An example of results obtained from (a) the proposed
algorithm and (b) the reference algorithm [8] in a speech/noise
mixture of 5dB SNR. In both figures (×) represents a pitch esti-
mate for the speech signal, and (+) represents a pitch estimate
for the noise signal.

proposed SD-FHMM algorithm are the voicing errors, E12 and
E21, which may be improved with a more sophisticated voicing
measure than that in (7). Fig. 1 further demonstrates the perfor-
mance of each of the algorithms. The failure of GMM-FHMM
to identify the noise pitch track is shown, and the aforemen-
tioned voicing errors of SD-FHMM can be seen.

5. Conclusion
Here an SD-FHMM based multipitch tracking algorithm was
proposed for the application of speech enhancement. Specific
requirements of such an algorithm were identified to be both re-
liable labelling of noise/speech sources, and robust performance
under conditions where the levels of sources vary. The flexible
SD model used allows for a range of features to be exploited for
identifying and labelling sources (e.g., as in this paper), and ex-
plicit consideration of broadband/stochastic signal components.
Integrating this model with an FHMM allows not only the track-
ing of pitches throughout time, but the ability to exploit this
time varying signal information to identify/label sources. The
proposed algorithm was compared to a recently developed ref-
erence algorithm, also using the FHMM framework. This ref-
erence algorithm’s use of prior information based solely on the
magnitude of a subset of the STFT coefficients is reliable, but
heavily dependent on the training data [8]. Furthermore, the
reference algorithm ignores a large number of higher frequency
spectral coefficients that may be useful in estimating fundamen-
tal frequency. The proposed algorithm overcomes these limita-
tions by working directly with complex STFT coefficients and
utilising prior information of normalised log-magnitude har-
monic envelopes (i.e., as). Experiments shown in Section 4
demonstrate that the reference algorithm failed to perform when
the level of the noise source varies, in contrast to the proposed
algorithm which continued to perform at all SNRs.
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