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ABSTRACT

We introduce the Harmonix set: a collection of annotations
of beats, downbeats, and functional segmentation for over
900 full tracks that covers a wide range of western popular
music. Given the variety of annotated music information
types in this set, and how strongly these three types of data
are typically intertwined, we seek to foster research that
focuses on multiple retrieval tasks at once. The dataset in-
cludes additional metadata such as MusicBrainz identifiers
to support the linking of the dataset to third-party informa-
tion or audio data when available. We describe the method-
ology employed in acquiring this set, including the annota-
tion process and song selection. In addition, an initial data
exploration of the annotations and actual dataset content
is conducted. Finally, we provide a series of baselines of
the Harmonix set with reference beat-trackers, downbeat
estimation, and structural segmentation algorithms.

1. INTRODUCTION

The tasks of beat detection [8], downbeat estimation [2],
and structural segmentation [34] constitute a fundamen-
tal part of the field of MIR. These three musical charac-
teristics are often related: downbeats define the first beat
of a given music measure, and long structural music seg-
ments tend to begin and end on specific beat locations –
frequently on downbeats [10]. The automatic estimation
of such information could result in better musical sys-
tems such as more accurate automatic DJ-ing, better intra-
and inter-song navigation, further musicological insights
of large collections, etc. While a few approaches exploit-
ing more than one of these musical traits have been pro-
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posed [2,11,25], the amount of human annotated data con-
taining the three of them for a single collection is scarce.
This limits the training potential of certain methods, espe-
cially those that require large amounts of information (e.g.,
deep learning [18]).

In this paper we present the Harmonix set: human an-
notations of beats, downbeats, and functional segmentation
for 912 tracks of western popular music. These annotations
were gathered with the aim of having a significant amount
of data to train models to improve the prediction of such
musical attributes, which would later be applied to various
products offered by Harmonix, a video game company that
specializes in musically-inspired games. By releasing this
set to the public, our aim is to let the research community
explore and exploit these annotations to advance the tasks
of beat tracking, downbeat estimation, and automatic func-
tional structural segmentation. We discuss the methodol-
ogy to acquire these data, including the song selection pro-
cess, and the inclusion of standard identifiers (AcoustID
and MusicBrainz) and a set of automatically extracted on-
set times for the first 30 seconds of the tracks to allow other
researchers to more easily access and align, when needed,
the actual audio content. Furthermore, we present a series
of results with reference algorithmic approaches in the lit-
erature with the goal of having an initial public benchmark
of this set.

The rest of this work is organized as follows: Section 2
contains a review of the most relevant public datasets of
the tasks at hand; Section 3 discusses the Harmonix set,
including the data gathering, their formatting, and various
statistics; Section 4 presents numerous benchmarks in the
set; and Section 5 draws some final conclusions and dis-
cusses future work.

2. BACKGROUND

Several datasets with beat, downbeat, and/or segment an-
notations have been previously published, and in this sec-
tion we review the most relevant ones.



2.1 Beat and Downbeat Tracking Sets

Over the last 15 years, many annotated datasets for beat
and downbeat tracking have appeared in the literature
whose primary purpose has been to allow the comparison
of newly proposed and existing algorithms. However, the
well-known difficulties of sharing the audio component of
large annotated datasets has led to a rather ad-hoc usage of
different datasets within the literature, and to a lesser ex-
tent, the choice of which evaluation metrics are selected to
report accuracy. Conversely, the MIREX evaluation cam-
paign provides a more rigid model for evaluation, by with-
holding access to private test datasets, and instead relying
on the submission of the competing algorithms in order to
compare them under controlled conditions. To this end,
MIREX can be a useful reference point to consider these
two music analysis tasks from the perspective of annotated
data.

The MIREX Audio Beat Tracking (ABT) task 1 first ap-
peared in 2006 and ran on a single dataset [28,30] with the
performance of the submitted algorithms determined using
one evaluation metric, the P-Score. After a brief hiatus, the
task reappeared in 2009 with the addition of a dataset of
Chopin Mazurkas [36], and the inclusion of multiple eval-
uation metrics [5]. The task continued to run in this way
until the incorporation of the SMC dataset [16] in 2012,
from which point it has remained constant. In 2014, the
Audio Downbeat Estimation (ADE) task 2 was launched
which comprised six different datasets from diverse geo-
graphic and stylistic sources: The Beatles [24]; Hardcore,
Jungle, Drum and Bass (HJDB) [15]; Turkish [41]; Ball-
room [21]; Carnatic [42]; and Cretan [17], with the eval-
uation conducted using the F-measure. While the datasets
contained with these two MIREX tasks are by no means
exhaustive, they provide a useful window to explore both
how the audio data is chosen and how the annotation is
conducted for these MIR tasks. To this end, we provide
the following breakdown of different properties including
reference to both MIREX and non-MIREX datasets.

Duration: Unlike the task of structural segmentation,
beat and downbeat tracking datasets can be comprised of
musical excerpts [14, 15, 21, 28] rather than full tracks
[9,12,13,24]. Number of annotators: The initial MIREX
beat tracking dataset [28] was unique in that it contained
the annotations of 40 different people who tapped the beat
to the music excepts. Conversely, other datasets used mul-
tiple annotators contributing across the dataset [16], a sin-
gle annotator for all excerpts [14], or even deriving the
annotations in a semi-automatic way from the output of
an algorithm [24]. Annotation post-processing: Given
some raw tap times or algorithm output, these can either
be left unaltered [28] or, as is more common, iteratively
adjusted until they are considered perceptually accurate by
the annotator(s) [14–16]. Style-specificity: While some
datasets are designed to have broad coverage across a range
of musical styles [13, 14, 23], others target a particular
group of styles [15, 21], a single style [9], the work of a

1 https://www.music-ir.org/mirex/wiki/2006:Audio_Beat_Tracking
2 https://www.music-ir.org/mirex/wiki/2014:Audio_Downbeat_Estimation

given artist [12, 24] or even multiple versions of the same
pieces [36]. Western / Non-Western: Similarly, the make
up of the dataset can target underrepresented non-western
music [33,41,42]. Perceived difficulty: Finally, the choice
of musical material can be based upon the perceived diffi-
culty of the musical excerpts, either from the perspective
of musical or signal level properties [16].

2.2 Structural Segmentation Sets

The task of structural segmentation has been particularly
active in the MIR community since the late 2000s. Simi-
larly to the beat tracking task, several datasets have been
published, and some of them have evolved over time. This
task is often divided into two subtasks: segment boundary
retrieval and segment labeling. All well-known published
datasets contain both boundary and label information. One
of the major challenges with structural segmentation is that
this task is regarded as both ambiguous (i.e., there may be
more than one valid annotation for a given track [26]) and
subjective (i.e., two different listeners might perceive dif-
ferent sets of segment boundaries [4]). This has led to dif-
ferent methodologies when annotating and gathering struc-
tural datasets, thus having a diverse ecosystem of sets to
choose from when evaluating automatic approaches.

The first time this task appeared on MIREX was
in 2009, 3 where annotations from The Beatles dataset
(which also includes beat and downbeat annotations, as
previously described) and a subset of the Real World Com-
puting Popular Music Database (RWC) [13] were em-
ployed. These sets contain several functional segment an-
notations for western (The Beatles) and Japanese (RWC)
popular music. These segment functions describe the
purpose of the segments, e.g.: “solo,” “verse,” “cho-
rus.” A single annotation per track is provided for these
two sets. The Beatles dataset was further revised at the
Tampere University of Technology, 4 and additional func-
tional segment annotations for other bands were added to
The Beatles set, which became known as the Isophonics
Dataset [24]. No beat or downbeat annotations were pro-
vided to the rest of the tracks in Isophonics, and the final
number of tracks with functional structural segment anno-
tations is 300. The number of annotated tracks in RWC is
365.

To address the open problems of ambiguity and sub-
jectivity, further annotations per track from several ex-
perts could be gathered. That is the case with the Struc-
tural Annotations for Large Amounts of Music Informa-
tion (SALAMI) dataset [39], where most of its nearly
1,400 tracks have been annotated by at least 2 musical ex-
perts. Similarly, the Structural Poly Annotations of Music
(SPAM) dataset [32] provides 5 different annotations for
50 tracks. These two sets not only contain functional lev-
els of annotations, but also large and small scale segments
where only single letters describing the similarity between
segments are annotated. Thus, these can be seen as sets
that contain hierarchical data, which pose significant chal-

3 https://www.music-ir.org/mirex/wiki/2009:Structural_Segmentation
4 http://www.cs.tut.fi/sgn/arg/paulus/beatles_sections_TUT.zip



lenges, since ambiguity and subjectivity span across mul-
tiple layers [26] and remain largely unexploited in the
MIREX competition [7,40]. As opposed to Isophonics and
RWC, these two sets contain highly diverse music in terms
of genre: from world-music to rock, including jazz, blues,
and live music.

The following properties typically define segmentation
datasets: Number of annotators: This can help when try-
ing to quantify the amount of disagreement among anno-
tators [26, 32], or when developing approaches that may
yield more than one potentially valid segmentation. Hier-
archy: The levels of annotations contained in the set. It
typically contains functional, large, and/or small segment
annotations. When only one level of annotations is pro-
vided, these are typically called flat segment annotations.

3. THE HARMONIX SET

In this section we present the Harmonix set, including the
methodology of acquiring the data, its motivation, its con-
tents, and a set of annotation statistics. The Harmonix set
is publicly available on-line. 5

3.1 Data Gathering

The primary motivation of this work is based on the need to
create gameplay data for rhythm-action games (also known
as beat matching games). Many such games exist, from
early pioneers like Parappa The Rapper and Beatmania, to
the rock simulation games Guitar Hero and Rock Band, as
well as community-based games like OSU and more re-
cently, VR games like Beat Saber. In most cases the game-
play data (also referred to as beatmaps), consisting of note
locations in a song, are hand-authored. In certain games,
additional control data may be desirable. For example, in
the rock simulation games, where a 3D depiction of a rock
concert is rendered, it can be desirable to simulate flashing
lights (on the beat) or lighting color palette changes (on
section boundaries). Again, these data tend to be hand-
authored.

Harmonix’s desire was to implement a suite of auto-
matic music analysis tools that estimate certain musical at-
tributes in order to expedite the process of hand-authoring
gameplay data, or in some cases, to fully automate the pro-
cess of creating these data. The songs of the Harmonix set
were gathered and hand-annotated to create a ground-truth
dataset for training and testing these algorithms.

The mix of genres in this corpus were chosen to be typ-
ical of ones used in the rhythm-action games, with a some-
what higher tendency towards EDM and popular songs
suitable for dancing (see Figure 1 for the full genre dis-
tribution). As such, most tend to have a very stable tempo
and a 4/4 time signature. However, we also added a selec-
tion of songs that may not be typical of dance or pop music
to increase variety. Some of these (Classic Rock, Coun-
try, Metal) may have less stable tempo (where drums are
played by actual musicians as opposed to drum-machines

5 https://github.com/urinieto/harmonixset
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Figure 1. Genre distribution of the Harmonix set.

or DAW-based productions) and may deviate from a strict
4/4 meter.

All songs were annotated by trained professional mu-
sicians who regularly work in music production environ-
ments. As the project went on, the majority of annotation
work fell to only a few individuals who became special-
ized in this task. Annotations were created in Digital Au-
dio Workstation software (such as Reaper or Logic). First,
a MIDI tempo track was established that corresponded
to the song audio. Then beats, downbeats, and sections
were coded into the MIDI track using note events and text
events. MIDI files were then exported and automatically
converted to a text-based representation of beats, down-
beats, and named section boundaries. Every song was ver-
ified once by the original annotator.

3.2 Dataset Contents

The Harmonix set contains manual annotations for 912
western popular music tracks, thus being the largest pub-
lished dataset to date containing beats, downbeats, and
function structural segmentation information. The anno-
tations and some of the song-level metadata are distributed
via JAMS [19] files, one per track. This format is cho-
sen given its simplicity when storing multi-task annota-
tions plus song- and corpus-level metadata. Each JAMS
file contains the beat, downbeat, and functional segmen-
tation annotations, plus a set of estimated onsets for the
first 30 seconds of the audio. These onsets are intended
to help aligning the audio in case researchers obtain au-
dio data with different compression formats that might in-
clude certain small temporal offsets. This onset informa-
tion was computed using librosa [27], with their default
parameters. 6

For the sake of transparency and usability, we also pub-
lish the raw beats, downbeats, and segmentation data as
space-separated text files, two per track: one for beats and
downbeats, and the other for segments. We also distribute
the code that converts these raw annotations into unified
JAMS files. Furthermore, we provide other identifiers with
the aim of easily retrieving additional metadata and/or au-
dio content for each song. These identifiers include:

• MusicBrainz 7 : open music encyclopedia including

6 librosa 0.6.3, using Core Audio on macOS 10.13.6.
7 https://musicbrainz.org/
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Figure 2. Tempo distribution of the tracks in the set.
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Figure 3. Standard deviation of the tempo distribution.

unique identifiers for recordings, releases, artists,
etc.

• AcoustID 8 : open source fingerprinting service to
easily match audio content, typically associated with
MusicBrainz identifiers.

Finally, we provide a single CSV file including addi-
tional metadata information such as genre, time signature,
and BPM.

3.3 Data Statistics

In this subsection we provide several data insights obtained
from the annotations to give an objective overview of the
set. In Figure 2 we show the estimated tempo distribu-
tion in beats-per-minute (BPM) per track. These estima-
tions were computed using the track-level median inter-
beat-interval (IBI) for each of the annotated beats in a given
track. There is a clear peak at 128 BPM, which could be
explained by being the most common tempo in electronic
dance music [29]. Furthermore, in Figure 3 we plot the
standard deviation of the IBI. We can clearly see that the
tempo is remarkably steady in this dataset, which is ex-
pected given the type of musical genres it spans.

In terms of segment statistics, we show data based on
certain attributes described in a MIREX meta-analysis of
the segmentation task [40]. In Figure 4 we plot track-level
histograms for the number of segments, and the number
of unique segments (i.e., those with the same associated
label). Both distributions seem to be unimodal and cen-
tered around 10 and 11 for the number of segments per
tracks, and around 6 and 7 for the number of unique la-
bels per track. This differs from the number of unique seg-
ments in The Beatles dataset, which is centered around 4
per track [31].

8 https://acoustid.org/
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Figure 5. Most common segment labels.

Figure 5 shows the frequency in which the most com-
mon segment labels appear in the set. The labels “chorus”
and “verse” dominate the distribution, as these functional
parts are common in western popular music. The plot also
shows potentially repeated labels like “inst” and “instru-
mental.” A further inter-song analysis of the labels might
be necessary to potentially merge certain labels and thus
unify the vocabulary of the set.

We plot in Figure 6 the distribution of the segment
lengths, in seconds, across the entire dataset. As we
showed in Figure 2, there is a majority of tracks at 128
BPM, for which a duration of 15 seconds would corre-
spond to a segment of exactly 32 beats. This, in the com-
mon 4/4 time signature, would result in 8 bars per each
15-second segment in that tempo, and 8 bars are common
in electronic dance music [29].

Finally, and thanks to having access to the annotated
downbeats, we show in Figure 7 the number of segments
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position within a bar.

starting at a specific beat within a given bar. We can see
that the vast majority of segments (81.1%) start in a down-
beat. Interestingly, several segments (10%) start in posi-
tion 4, thus showing that 1-beat count-ins are more com-
mon than other types of count-ins on this dataset (a popular
example of a 1-beat count-in song is Hey Jude by The Bea-
tles, where the (1) is on the Jude and Hey is the (4) of the
previous bar).

4. RESULTS

4.1 Beat Results

In order to establish performance baselines over the dataset
for the task of beat-tracking, we have evaluated a num-
ber of openly available beat tracking algorithms on the
dataset [3,8,20,22]. Each of these algorithms can be found
in either the madmom [1] or librosa python libraries. 9 By
running these algorithms in other datasets with the same
metrics, a comparison of datasets could ultimately be per-
formed. The results are also included in the dataset repos-
itory in CSV format. This is intended as a convenience for
any future work that wishes to evaluate novel algorithms
against these benchmarks.

The beat tracking results for the aforementioned algo-
rithms are displayed in Figure 8. They are evaluated across
two metrics, F-Measure, and Max F-Measure, where the
latter refers to the maximum F-Measure obtained per track
when evaluated across double and half-time metrical vari-
ations in the annotated beats provided with this dataset.
In all experiments a tolerance window of ±70 ms was
employed in order to compute the F-Measure. For half-
time metrical variations, both the downbeat and upbeat
alignments were tested for a maximum F-Measure value.
While [8] is the most computationally efficient of the algo-
rithms, we see clear gains in the more recently developed
methods. When investigating the types of errors present in
the beat position estimates from [8], it was found the most
common error was the alignment of beat phase. Often beat
positions landed on the half beat or quarter beat, result-
ing in an F-Measure of 0 when this misalignment is con-

9 We used madmom 0.16.1 and librosa 0.6.3. We noticed a
bias in this librosa version where beats were offset by a consis-
tent number of milliseconds. More specifically, we employed li-
brosa’s beat.beat_track method with default arguments on macOS
10.13.6.
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Figure 8. Beat tracking performance over the Har-
monix set, for the algorithms Ellis [8], Krebs [22], Ko-
rzeniowski [20], Böck 1 - the “BeatDetector” technique
from [3], and Böck 2 - the “BeatTracker” technique from
[3].

sistent throughout the track. When comparing F-Measure
and Max F-Measure metrics, it can be seen that with this
dataset both [8] and the “BeatDetector” algorithm from [3]
have a significant number of double-half time errors, com-
pared to the other algorithms evaluated. Unlike the “Beat-
Tracker” algorithm in [3], the “BeatDetector” algorithm
assumes constant tempo.

4.2 Downbeat Results

Unfortunately, the availability of open source downbeat es-
timation libraries is limited. In order to provide a baseline
for downbeat detection performance with the Harmonix set
specifically, results have been evaluated with the downbeat
detection algorithms available in [1] in addition to Du-
rand’s algorithm [6] 10 , making three algorithms in total.
The algorithms from the madmom python package [1] in-
clude the method proposed in [2] using the annotated beat
positions as input, and the dynamic Bayesian bar track-
ing processor using the input from the RNN bar proces-
sor activation function. The results can be seen in Fig-
ure 9 in terms of F-Measure with a tolerance window of
±70 ms. The superior performance of [2], which has or-
acle annotated beat information, highlights the importance
of reliable beat tracking for downbeat estimation perfor-
mance, and the interdependence between the beat tracking
and downbeat estimation tasks.

4.3 Segmentation Results

There are several open source structural segmentation al-
gorithms available in the Music Structure Analysis Frame-
work (MSAF) [32]. 11 We run the best performing ones on
the Harmonix set: (i) Structural Features [38] to identify
boundaries, and (ii) 2D-Fourier Magnitude Coefficients
(2D-FMC) [31] to label the segments based on their acous-
tic similarity. Constant-Q Transforms [37] are the selected

10 Not open source, shared via private correspondence.
11 MSAF version dev-0.1.8.
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Figure 9. Downbeat tracking performance over the Har-
monix set, for the algorithms Böck A [2] and Böck B - a
dynamic Bayesian network provided within the madmom
package [1], and Durand [6].

audio features given their ability to capture both timbral
and harmonic content, and the default parameters in MSAF
are the ones employed when computing these results. We
use mir_eval [35] to evaluate these algorithms, and re-
port the F-measures for the most common metrics: Hit
Rate with 0.5 and 3 second windows for boundary re-
trieval, and Pairwise Frame Clustering and Entropy Scores
for the labeling process. These algorithms can use beat-
synchronized features, and we ran each algorithm three
times, depending on the following beat information: (i) El-
lis’ estimations, (ii) Korzeniowski’s estimations, and (iii)
annotations from the Harmonix set. Thus, we are able to
assess the segmentation results when employing the worst
and best performing beat trackers from our previous study,
plus those computed using human annotated beats. Song-
level results for these three different runs are available as
CSV files in the dataset repository disclosed above.

In Figure 10 all segmentation results are shown. The
results in turquoise boxplots (on the left side) display the
metrics of the algorithms when running on Ellis’ beat-
synchronized features, those in light pink (in the middle)
correspond to the results computed with Korzeniowski’s
beats, while the purple boxplots (on the right) show those
using annotated beats instead. Given how related boundary
retrieval is with respect to precise beat placement, it is not
unexpected to see an improvement in the boundary metrics
(Hit Rates) when using more accurate beat data. The box-
plots further show that the smaller the time window used
in the Hit Rate metrics the more accurate the beat informa-
tion should ideally be. In other words, Korzeniowki’s beats
yield very similar results than those from human annota-
tions when using a 3 second window, but there is clearly
room for enhancement (in terms of beat tracking) when
using 0.5 second windows, where the segmentation results
using human annotated beats outperform any of the others
that employ estimated ones. On the other hand, it is worth
noting that the label results do not seem to depend as much
on the quality of the beats in order to produce their out-
comes, as the three different runs yield similar results for
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Figure 10. Segmentation results over the Harmonix set,
using Structural Features for boundaries, 2D-FMC for the
labeling process, and three types of beat information.

the Pairwise Frame Clustering and Entropy Scores metrics.
As mentioned in Section 2.2, structural segmentation is a
challenging task especially due to ambiguity, subjectivity,
and hierarchy, and this is reflected in the overall results,
which exhibit notable room for improvement.

5. CONCLUSIONS

We presented the Harmonix set, the largest dataset in
terms of human annotations containing the following three
types of music information: beats, downbeats, and func-
tion structural segments. This set contains mostly western
popular music, with strong emphasis on Pop, EDM, and
Hip-Hop. We provide metadata in terms of genre, song ti-
tle, and artist information along with standard identifiers
such as MusicBrainz and AcoustID plus predicted onset
information to allow easier matching and alignment with
audio data. We discussed a set of results using current al-
gorithms in the literature in terms of beat tracking, down-
beat estimation, and structural segmentation to disclose an
initial public benchmark of the set. Given the rather large
nature of the set and the three different types of music in-
formation contained in it, it is our hope that researchers
employ these data not only to further advance one of these
three MIR tasks individually, but also to potentially com-
bine them to yield superior approaches in the near future.
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