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ABSTRACT

Music segmentation refers to the dual problem of identifying bound-
aries between, and labeling, distinct music segments, e.g., the cho-
rus, verse, bridge etc. in popular music. The performance of a
range of music segmentation algorithms has been shown to be de-
pendent on the audio features chosen to represent the audio. Some
approaches have proposed learning feature transformations from
music segment annotation data, although, such data is time con-
suming or expensive to create and as such these approaches are
likely limited by the size of their datasets. While annotated mu-
sic segmentation data is a scarce resource, the amount of available
music audio is much greater. In the neighboring field of semantic
audio unsupervised deep learning has shown promise in improving
the performance of solutions to the query-by-example and sound
classification tasks. In this work, unsupervised training of deep
feature embeddings using convolutional neural networks (CNNs) is
explored for music segmentation. The proposed techniques exploit
only the time proximity of audio features that is implicit in any
audio timeline. Employing these embeddings in a classic music
segmentation algorithm is shown not only to significantly improve
the performance of this algorithm, but obtain state of the art perfor-
mance in unsupervised music segmentation.

Index Terms— Music information retrieval, Acoustic signal
processing, Convolutional neural network, Deep learning

1. INTRODUCTION

Music segmentation refers to the task of labeling distinct segments
of music in a way that is similar to a human annotation. For exam-
ple the chorus, verse, intro, outro and bridge in popular music.. The
boundary between such segments may be due to a number of factors,
for example, a change in melody or chord progression, a change in
rhythm, changes in instrumentation, dynamics, key or tempo. This
task is generally evaluated with two classes of metrics. The first
class, boundary detection, refers to the ability of the algorithm to
locate the locations of such boundaries in time. The second class,
segment labelling, refers to the labelling of segments where two seg-
ments that are disconnected in time are labelled as same or different
based on their perceptual similarity [1–3].

1.1. Prior Work

A number of techniques exist in the literature that address either the
boundary detection [4–6], segment labelling [7] problems, or both
simultaneously [8–11]. Methods addressing solely the former met-
ric typically involve the generation of a novelty function via a self
similarity matrix (SSM) representation. Other approaches address-
ing both of the aforementioned metrics focus on clustering audio
features based on characteristics that are expected to remain homo-
geneous within a given musical segment. Such clustering has been

performed on the basis of timbral and harmonic features in the con-
text of spectral clustering [9], or in the context of time-translation
invariant features such as HMM state histograms [8]. In addition, a
number of feature transformations have been considered with respect
to clustering approaches, including non-negative matrix factoriza-
tions (NMFs) of audio features [11] or self-similarity matrices [12],
as well as learned features from labelled segmentation data [5].

In the context of supervised deep learning some work has ad-
dressed the problem of music segmentation [13–15], where perfor-
mance is likey bound by the limited annotated music segmentation
data available. The largest effort to collect labeled music segmenta-
tion data is in the SALAMI dataset [16], providing 2246 annotations
of music structure in 1360 audio files. This amount of data is small
in the context of deep learning, but promising results were obtained.

Recently, in the neighboring field of semantic audio, unsuper-
vised approaches towards embedding audio features have attracted
attention in the literature [17–19]. In particular, the benefits of learn-
ing audio feature embeddings in an unsupervised manner have be-
come apparent in [17]. Because there is no requirement for labeled
data in training such embeddings, they can be trained on much larger
datasets and in turn, this has achieved impressive results when such
pre-trained embeddings are employed in sound classification and
query by example tasks [17]. Despite the promising results obtained
for tasks related to the identification of events in audio, little to no
investigation has been made into the use of such unsupervised audio
feature embeddings for music content specifically.

1.2. Contributions

This work focuses on the unsupervised training of CNNs to obtain
meaningful features for music segmentation methods. This is a natu-
ral progression of the application of modern machine learning meth-
ods to the problem of music segmentation for three reasons.

Firstly, previous literature pays careful attention to obtaining
features that are representative of musical characteristics that are
perceptually important in identifying segment boundaries such as
timbre or harmonic repetition [4–6, 9, 10, 20–24]. Whether or not
a given feature is important in identifying a segment boundary or la-
bel may be genre or song specific and so a data based approach may
be promising in either producing a representation that better general-
izes across genres or in the least may be arbitrarily learned for each
genre specifically. Several data based approaches have been inves-
tigated for the music segmentation problem [5, 10, 13], with little to
no work in the context of unsupervised deep learning.

Secondly, musical content has a structure that may be exploited
to further improve the machine learning methodologies employed in
works such as [17–19]. The characteristics that define music such as
rhythm and harmonicity have not been exploited in these previous
works. warranting some investigation in the context of music.

Finally, labeled data for the problem of music segmentation is
notoriously time consuming and/or expensive to produce [25], as



such an unsupervised machine learning approach that can exploit
large amounts of unlabeled music data is highly desirable. The ap-
proach in this paper investigates deep learning in an unsupervised
framework, where only the time locality and a comparative analy-
sis of time local data is exploited. Such an approach overcomes the
necessity to hand annotate data, and hence may be scaled to the full
extent of the available music data. No longer limited by the size
of the training dataset, it is expected to generalize better than hand
crafted features that rely on aspects such as timbre or repetition that
may be specific to certain music genres.

2. AUDIO FEATURE EMBEDDING

The approach of here is to create an embedding for audio features by
transforming an audio representation via a CNN into a domain that
is representative of musical structure. These embeddings may be
trained by employing a loss function, such as contrastive loss [26],
or triplet loss [27], that observes positive (similar) or negative (dis-
similar) pairs or triplets of examples, where a triplet represents an
anchor and both a positive example and a negative example. The
triplet loss function is often shown to result in superior performance
to contrastive loss, which has been argued to be due to the its relative
nature [28]. That is, the triplet loss function is designed to provide
a positive gradient with respect to increasing distance between posi-
tive pairs or the anchor and positive example of a triplet, relative to
the distance between negative pairs, up to a given margin. As such,
it is employed in this research.

If a transformation from an input feature, x[q, k] (or equivalently
x for notational simplicity) to an embedding space, e.g., via a CNN,
is described as f : RK×Q → RD , then a Euclidean triplet loss with
a given margin, α, and a mini-batch of training data consisting of the
set T =

{
xca, x

c
p, x

c
n

}c=C−1

c=0
may be described as,

L(T ) =
C−1∑
c=0

[∥∥f (xca)− f (xcp)∥∥22 − ‖f (xca)− f (xcn)‖22 + α
]
+
,

(1)
where subscript a, p and n represent an anchor, positive and negative
input example respectively.

Ideally, in the context of music segmentation positive examples
will be composed of audio feature representations from the same
music segment as the anchor, while negative examples will represent
audio features from distinct music segments. Thus, once trained,
input features could be transformed via that CNN into a space where
distinct clusters with respect to a Euclidean distance metric would
represent distinct music segments. In an unsupervised context with
no prior information about the music segmentation, exact selection
of such examples is not possible, however strategies are described in
Section 3 that may improve this selection.

The properties that are significant in forming clusters represent-
ing music segments in the embedded space are learned from the data
at the CNN input. These embedded features may be representative
of any of the musical qualities mentioned in Section 1, provided
that these qualities are observable from the input features. Here,
a constant-Q transform (CQT) [29] is used due to its ability to accu-
rately represent transient and harmonic audio qualities, its translation
invariant representation of harmonic structures, and the promising
results observed for this feature specifically in [30].

A time window of CQT data providing K frequency bins across
Q time windows forms a time frequency representation that may
compose any of xca, xcp or xcn. In this work it is found significantly
advantageous to synchronize the CQT analysis windows with the
beat of the music. That is, if a beat at index i occurs at time bi, then

R CQT windows are analyzed centered at times bi+r(bi+1−bi)/R
for integers, r ∈ {0..R− 1}. These beat synchronized CQT repre-
sentations are then aggregated across B beats providing Q = BR
time indices in the representation x[q, k] at the input to the CNN.

3. SAMPLING

Motivated by the unreasonable effectiveness of data in deep learn-
ing [31], methods are proposed here that create noisy positive / neg-
ative examples exploiting the facts that a) musical segments form
contiguous regions in a song’s timeline, and b) each distinct musical
segment label typically occurs for the minority of a song’s timeline.
Specifically, it is proposed to use the time proximity information
implicit in a song’s features - sampling features that occur close
together or at a minimum distance apart for positive and negative ex-
amples respectively. That is, an anchor beat index, ia, is selected via
a uniform sampling of the beat indices in a given song, {0..L− 1}.
Thereafter, a positive beat index, ip, is chosen uniformly sampled
from beat indices {max(ia − δp, 0)..min(ia + δp, L− 1)}, and
a negative beat index in is chosen as uniformly sampled across
two regions, {max(ia − δn,max, 0)..max(ia − δn,min, 0)}, and
{min(ia + δn,min, L− 1)..min(ia + δn,max, L− 1)}. An exam-
ple of the positive and negative sampling distributions is shown in
Fig. 1. Intuitively, this results in an embedding in which clusters
represent features that frequently occur close together. This is useful
for the problem of the structural segmentation of music as segment
boundaries are typically infrequent enough to be described as rare
events, at least in comparison to lengths of the segments themselves.

It is interesting to consider the rates of false positives and nega-
tives that result from the aforementioned sampling paradigm. Upon
selection of ia it may be denoted to fall somewhere in the nth musi-
cal segment of class s and length ls,n. If δp < lsep, where lsep is the
minimum number of indices between s and any identically labeled
segment, then the probability of the positive example being selected
from a distinct segment, i.e., a false positive, is,

P (FP|ls,n; δp) =


2δp−ls,n
ls,n

ls,n ≤ δp
δ2p

2l2s,n
− 3δp

4ls,n
+ 1

2
δp < ls,n < 2δp

δp
4ls,n

2δp ≤ ls,n

.

Similarly, if δn,min < lsep and δn,max ≥ L, then the probabillity
of a false negative is simply

∑
m ls,m
L

− (1− P (FP|ls,n; δn,min)).
In practice the aforementioned assumptions are realistic in many

scenarios, but do not hold under all conditions. An empirical analy-
sis of the rate of false positives is shown in Fig. 2. It is clear that with
an increasing δp, an increasing rate of false positives is observed, al-
though it is important to note that smaller δp restricts the maximum
observed time separation between the anchor and positive example.
With musical phrases often lasting 16 beats, it is reasonable to set
δp ≥ 16 to discourage distinct clustering of features within a sin-
gle phrase. An empirical analysis false negatives is shown in Fig. 3.
There it can be seen that for the datasets shown δn,min > 28 and
δn,max > 116 result in relatively low false negative rates.

While structural annotations are not available under the scope
of unsupervised learning, it is interesting to ask whether analysis of
signal features may be employed to decrease the false-negative or
false-positive rate. It was shown in [7] that 2D Fourier magnitude
coefficients of HPCPs can be a useful feature in segment labeling.
It is proposed here to use a similar feature to inform the sampling
of positive and negative examples. That is, for every selected ia,
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Fig. 1. Sampling distributions for in and ip, for a given choice of ia.

δp

%FP

Fig. 2. Observed false positive (FP) rates in the BeatlesTUT (�), and
SALAMI (�), datasets for varying δp. Dashed lines show results
with unbiased sampling, and solid lines employ the comparitive 2D
FFT technique described here.

a comparison of the log-amplitude of the 2D Fourier transform of
the log-amplitude of 8 beat long CQT segments is considered. The
Euclidean distances between these CQT segments centered at two
times before ia, i.e., ia − 4 and ia − 16, and two times after ia,
i.e., ia + 4 and ia + 16 are considered. The side (“before” where
i < ia or “after” where i > ia) with minimum Euclidean distance
is then assumed to be more likely in the same musical segment as ia
and is chosen from which to sample ip while the opposite side may
be chosen from which to sample in, in addition to the constraints,
δp, δn,min and δn,max above. The changes in false negative and
false positive rates employing this sampling paradigm can be seen in
Figures 2 and 3, respectively, where some improvement is observed.

4. BOUNDARY DETECTION

To evaluate the effectiveness of the music embeddings described in
this work, the problem of music segment boundary detection is con-
sidered. Perhaps the simplest and most well known method for mu-
sic boundary detection is that of Foote [4]. While this has been sur-
passed in performance by several methods, e.g., [6, 9], its simplicity
makes it effective in demonstrating the utility of the audio embed-
dings proposed here, as will be seen in the results in Section 5.

The SSM of the proposed features is computed as,

S[i, j] = ‖f (xi[q, k])− f (xj [q, k])‖22 (2)

where xi[q, k] and xj [q, k] correspond to beat synchronous CQT
segments centered at beats i and j, respectively.

Note that this work endeavors to create features that are close
with respect to Euclidean distance at any point within a music seg-
ment. If successful, the SSM of embedded features typically con-
tains block structures as opposed to the path structures typically rep-
resentative of repetition. These structures are evident in Fig. 4. It was
found beneficial in practice to perform median filtering on S[i, j] to
produce S̄[i, j] which reduces noise in the distances between em-
bedded features while maintaining the aforementioned structures.

To detect segment boundaries in S̄[i, j], a checkerboard kernel,

δn,max

%FN

Δ%FN

δn,max

δn,min

δn,min

SALAMIBeatlesTUT
a)

b)

Fig. 3. Observed false negative (FN) rates for various δn,min and
δn,max. Row (a) shows FN raters resulting from unbiased sampling,
while row (b) represents the change in FN rates when employing the
comparitive 2D FFT technique described in this paper.

g[i, j] = sgn(i)sgn(j)e
−(i−j)2

σ (3)

for −κ ≤ i, j ≤ κ is convolved along the diagonal of the SSM,

η[ν] =

κ∑
i=−κ

κ∑
j=−κ

S̄[ν + i, ν + j]g[ν + i, ν + j] (4)

producing the novelty function η[ν]. Note that it was found advanta-
geous to set g[i, j] to 0 where |i| ≤ 1 or |j| ≤ 1. Finally, boundaries
are detected as peaks in the novelty function. Specifically, peaks at
which the peak-to-mean ratio exceeds a given threshold, τ , are se-
lected as segment boundaries, i.e., where,

(2T + 1)η[ν]∑T
t=−T η[ν + t]

> τ. (5)

5. RESULTS

For evaluation, two datasets are considered: the BeatlesTUT dataset
consisting of 174 hand annotated tracks from The Beatles cata-
logue [20], and the internet archive portion of the SALAMI dataset
(SALAMI-IA) consisting of 375 hand annotated recordings [16].
The former dataset is perhaps the most widely evaluated in the
music segmentation literature. The latter is employed here for two
reasons, firstly the complete SALAMI dataset audio is not avail-
able to the author due to copyright restrictions, and secondly, the
SALAMI-IA dataset is particularly interesting as it consists pri-
marily of live recordings with many imperfections. It provides a
dataset that is indicative of segmentation performance when there
are mistakes either by musicians or recording engineers, resulting in
imperfect repetitions and distorted or noisy audio in many cases.

For comparison, two baseline algorithms are included in the re-
sults as specified and measured in [30], note that these algorithms
too included beat-synchronized features. Firstly, the method of [4]
is included as it most closely mirrors the algorithm of Section 4.
Secondly, the algorithm of [6] is widely evaluated as having the best
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Fig. 4. Example of median filtered SSM and novelty function for the
song ”Starlight” by Muse. On both, detected boundaries are marked
with yellow lines.
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Fig. 5. Architecture of the CNN employed in experiments. For each
convolutional layer, dimensions represent time, frequency and chan-
nel respectively. Each convolutional and dense layer employ a ReLU
activation. All convolutional layers employ 6× 4 kernels.

performance with respect to unsupervised boundary detection in mu-
sic segmentation. CQT features have been evaluated to provide su-
perior performance in [30], and are used at the input to all algo-
rithms, proposed and benchmark, in the results presented here. For
the proposed algorithms, three methods are investigated, ”Unsyn-
chronized”, employing a constant hop size of 3.6 ms between suc-
cessive CQT windows; ”Beat-Synchronized”, employing 128 CQT
windows centered at times linearly interpolated between successive
beat markers (estimated during training and inference by an algo-
rithm similar to [32]); and ”Biased”, employing the same features as
the ”Beat-Synchronized” approach, but using the 2D Fourier Trans-
form comparison sampling described in Section 3. The CQT features
use a minimum frequency of 40 Hz, 12 bins per octave and 6 octaves.

The structure of CNNs employed in this paper is chosen to be
simple enough so that it may be trained on most modern high perfor-
mance GPUs. The architecture described in Fig. 5 was found to be
effective and is employed in the experiments here. During training,
mini-batches of size C = 96 consisting of 16 triplets from each of 6
randomly selected tracks were formed in real-time by randomly se-
lecting from 28,345 songs, excluding all songs in the SALAMI-IA
and BeatlesTUT dataset. 256 min-batches form 1 epoch, and train-
ing took place over 240 epochs taking approximately 8 hours. The
triplet margin was set to α = 0.1. Despite the observed error rates
in Figures 3 and 3, [27,28] argue that it is the difficulty of separation
between examples that is important, and so not all false positives
and negatives are equal. In practice it was found that δp = 16,
δn,min = 1 and δn,max = 96 provide optimal results.

For boundary detection, embedded features were observed at ev-

Table 1. Performance metrics for the BeatlesTUT dataset

Algorithm F-Measure Precision Recall

[4] 0.503 ± 0.18 0.579 ± 0.21 0.461 ± 0.17
[6] 0.651 ± 0.17 0.622 ± 0.19 0.708 ± 0.19
Unsynchronized 0.597 ± 0.17 0.589 ± 0.19 0.625 ± 0.17
Beat-Synchronized 0.648 ± 0.17 0.647 ± 0.20 0.677 ± 0.18
Biased Sampling 0.662 ± 0.17 0.663 ± 0.20 0.691 ± 0.19

Table 2. Performance metrics for the SALAMI-A dataset

Algorithm F-Measure Precision Recall

[4] 0.446 ± 0.17 0.457 ± 0.21 0.483 ± 0.19
[6] 0.493 ± 0.17 0.454 ± 0.20 0.595 ± 0.19
Unsynchronized 0.497 ± 0.16 0.429 ± 0.18 0.653 ± 0.15
Beat-Synchronized 0.535 ± 0.15 0.491 ± 0.20 0.660 ± 0.16
Biased Sampling 0.533 ± 0.16 0.491 ± 0.21 0.656 ± 0.16

ery beat for beat-synchronized approaches, or once every 0.2484 sec-
onds for ”Unsynchronized” (this is approximately twice per beat at a
typical 120 BPM to ensure this method is not disadvantaged by any
shortcoming in time resolution). SSM representations were median
filtered using an 8x8 window. The checkerboard kernel was config-
ured with σ = 18.5 and κ = 40 and for peak picking, the crest
factor window size T = 10 and threshold τ = 1.35 was employed.

For evaluation, the trimmed F-measure, precision and recall of
the boundary detection hit rate at the 3 second tolerance level are
employed [1]. The evaluation of the proposed and reference al-
gorithms for the BeatlesTUT and SALAMI-IA dataset are shown
in Table 1 and Table 2, respectively. It should be noted here that
for the proposed algorithms, any selection of parameters was per-
formed by observing results on the BeatlesTUT dataset only, and so
the SALAMI-IA dataset displays the boundary detection algorithm’s
ability to generalize to unseen data.

It is interesting to see that simply by employing the proposed
deep features in an algorithm similar to that of Foote [4], such a
method becomes competitive with the state of the art in unsupervised
music segmentation. Furthermore, on the SALAMI-IA dataset, a
significant performance improvement over the state of the art is ob-
served without any additional parameter adjustment. This result
might be postulated to be due to the poor quality of audio / music
data in this portion of the SALAMI dataset. Because the algorithm
of [6] is designed to detect changes in repetition patterns, when these
patterns become imperfect, or corrupted by noise, a performance
drop might be expected. In the proposed embedding, clustering of
features is performed simply based on the time proximity of features
observed from the training data, which contains many of the afore-
mentioned imperfections providing some robustness.

6. CONCLUSION

In this work, methods for the unsupervised training of music em-
beddings were investigated with respect to their utility in the task
of music segmentation. In particular, it was shown that by employ-
ing such embeddings in a traditional music segmentation algorithm,
the performance of this algorithm can obtain state of the art perfor-
mance. It was found that a common musical feature, rhythm, may
be exploited in beat-synchronized sampling (and in the 2D Fourier
Transform comparitive sampling of Section 3) to further improve
performance.
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detection with convolutional neural networks,” in Acoustics,
Speech and Signal Processing (ICASSP), IEEE International
Conference on, 2014, pp. 6979–6983.

[15] Thomas Grill and Jan Schluter, “Music boundary detection
using neural networks on spectrograms and self-similarity lag
matrices,” in EUSIPCO, 2015, pp. 1296–1300.

[16] Jordan Bennett Louis Smith, John Ashley Burgoyne, Ichiro Fu-
jinaga, David De Roure, and J Stephen Downie, “Design and
creation of a large-scale database of structural annotations,” in
ISMIR, 2011, pp. 555–560.

[17] Aren Jansen, Manoj Plakal, Ratheet Pandya, Daniel PW Ellis,
Shawn Hershey, Jiayang Liu, R Channing Moore, and Rif A
Saurous, “Unsupervised learning of semantic audio represen-
tations,” in Acoustics, Speech and Signal Processing (ICASSP),
IEEE International Conference on, 2018, pp. 126–130.

[18] Justin Salamon and Juan Pablo Bello, “Unsupervised feature
learning for urban sound classification,” in Acoustics, Speech
and Signal Processing (ICASSP), IEEE International Confer-
ence on, 2015, pp. 171–175.

[19] Justin Salamon and Juan Pablo Bello, “Feature learning with
deep scattering for urban sound analysis,” in EUSIPCO, 2015,
pp. 724–728.

[20] Jouni Paulus and Anssi Klapuri, “Music structure analysis by
finding repeated parts,” in Proceedings of the 1st ACM work-
shop on Audio and music computing multimedia, 2006, pp. 59–
68.

[21] Wei Chai, “Semantic segmentation and summarization of mu-
sic: methods based on tonality and recurrent structure,” IEEE
Signal Processing Magazine, vol. 23, no. 2, pp. 124–132, 2006.

[22] Matija Marolt, “A mid-level melody-based representation for
calculating audio similarity,” in ISMIR, 2006, pp. 280–285.

[23] Kristoffer Jensen, “Multiple scale music segmentation using
rhythm, timbre, and harmony,” EURASIP Journal on Applied
Signal Processing, vol. 2007, no. 1, pp. 159–159, 2007.

[24] Johan Pauwels, Florian Kaiser, and Geoffroy Peeters, “Com-
bining harmony-based and novelty-based approaches for struc-
tural segmentation,” in ISMIR, 2013, pp. 601–606.

[25] Cheng-i Wang, Gautham J Mysore, and Shlomo Dubnov, “Re-
visiting the music segmentation problem with crowdsourcing,”
in ISMIR, 2017, pp. 738–744.

[26] Raia Hadsell, Sumit Chopra, and Yann LeCun, “Dimension-
ality reduction by learning an invariant mapping,” in In Proc.
Computer Vision and Pattern Recognition Conference (CVPR),
2006, pp. 1735–1742.

[27] Florian Schroff, Dmitry Kalenichenko, and James Philbin,
“Facenet: A unified embedding for face recognition and clus-
tering,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2015, pp. 815–823.

[28] Chao-Yuan Wu, R Manmatha, Alexander J Smola, and Philipp
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